FOURTEENTH INTERNATIONAL ROTAVIRUS SYMPOSIUM MARCH 14-16 2023 BALLINDONESIA

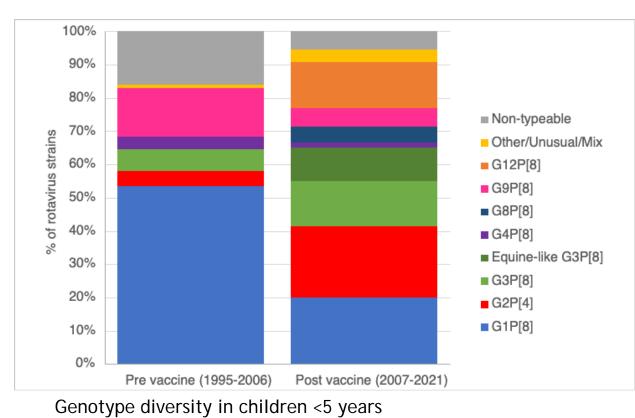
Learn more on www.sabin.org

Characterising the diversity of unusual rotavirus strains in Australian children and adults

Dr Celeste Donato, PhD Senior Research Officer

- * Enteric Diseases Group, Murdoch Children's Research Institute
- * Department of Paediatrics, University of Melbourne
- * Department of Microbiology, Monash University
- * AusPathogen/Centre for Pathogen Genomics, The Peter Doherty Institute for Infection and Immunity

14th International Rotavirus Symposium, Bali March 16 2023



© Murdoch Children's Research Institute, 2022 3

The vaccine era in Australia

- Australia Rotavirus Surveillance Program has monitored genotypes present in Australian children since 1989
- 19 collaborating laboratories nationwide collect rotavirus-positive specimens
- Vaccines were introduced in 2007
 - Rotarix used nationally since 2017
- Shift in genotype diversity
 - ↓ G1P[8]
 - ↑ G2P[4]
 - Emergence of equine-like G3P[8]
 - Emergence of G12P[8]
 - Emergence of G8P[8]
 - Emergence of G9P[4]
 - ↑ detection of unusual

Methods

Poster 12

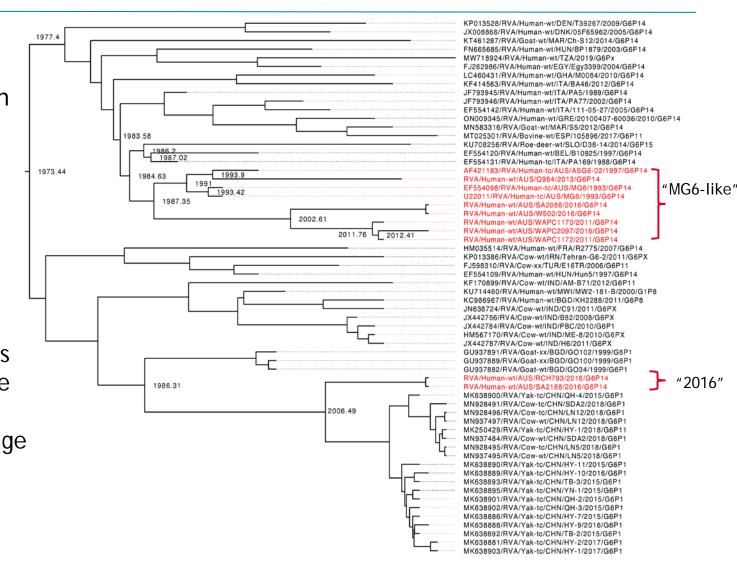
- Full genome sequencing (n=300)
 - Amplicon & random amplification
 - Twist Biosciences comprehensive viral panel

- Nextera-XT Library preps & Illumina MiSeq/NextSeq
- Genome assembly
 - Custom Galaxy pipeline
 - Genome Detective
- Maximum Likelihood Phylogenetic analysis RAxML-NGS
- Bayesian analysis BEAST

Bovine-like strains

Genotype	VP7	VP4	VP6	VP1	VP2	VP3	NSP1	NSP2	NSP3	NSP4	NSP5
G6P[14] n=14	G6	P[14]	12	R2	C2	M2	A11	N2	Τ6	E2	H3
G8P[14] n=27	G8	P[14]	12	R2	C2	M2	A11	N2	Τ6	E2	H3
G10P[14] n=11	G10	P[14]	12	R2	C2	M2	A11	N2	Τ6	E2	H3
G8P[1] n=1	G8	P[1]	12	R2	C2	M2	A3	N2	Τ6	E2	H3
G8P[4] n=1	G8	P[4]	12	R2	C2	M2	A2	N2	T2	E2	H2
G10P[25] n=1	G10	P[25]	12	R2	C2	M2	A1	N1	Т6	E2	H1

G6P[14] - VP7

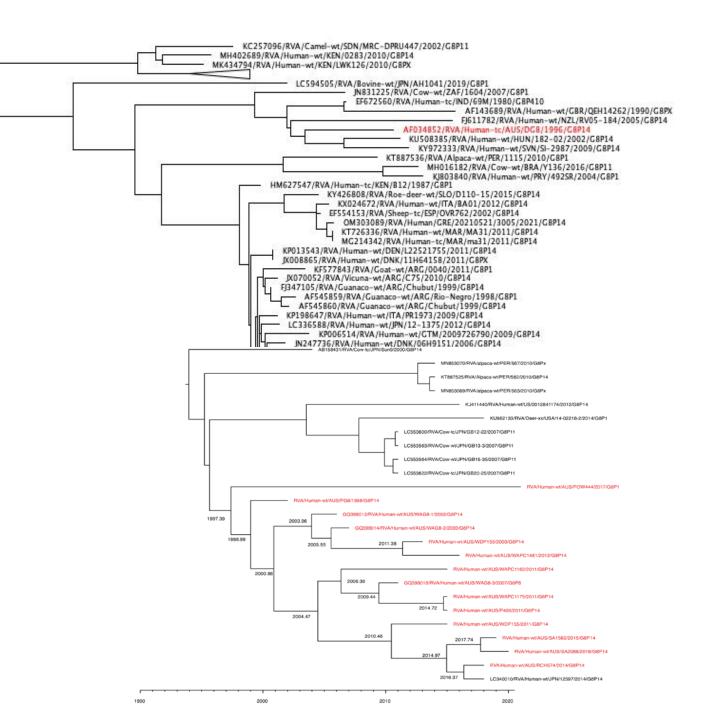

- "MG6-like" cluster
 - Primarily in adults 16-84 yrs
 - Diverged from MG6-like ancestor in 1987
 - Unsampled diversity long branch lengths
 - Repeated reintroduction?
 - Continued circulation at low frequency?
- "2016" cluster
 - Nov 2016 from 16.5 yrs and 21.6 yrs
 - shared a MRCA in 2006 with Chinese Cow/Yak strains
 - Poorly characterised endemic lineage of bovine origins

1980

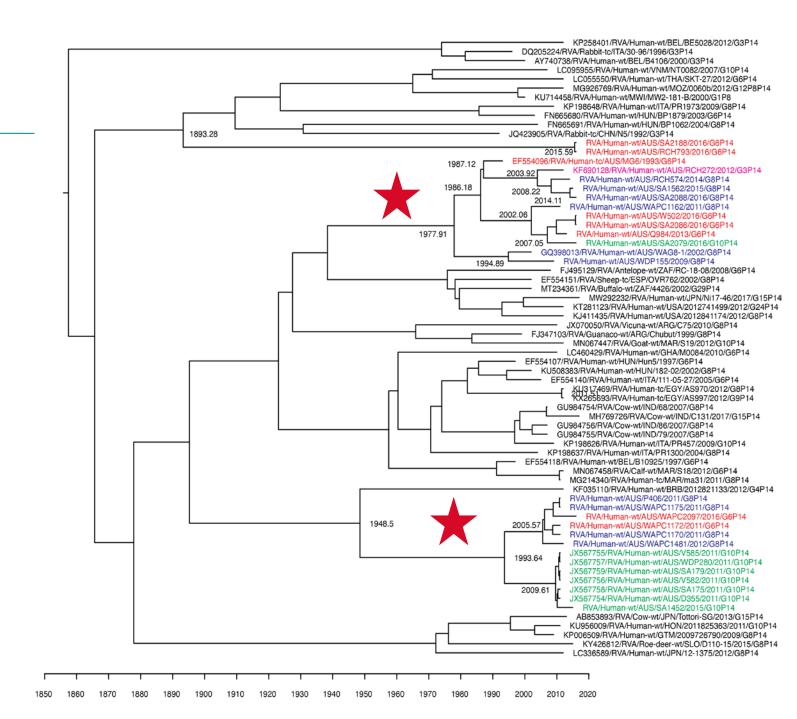
1990

2000

 Not closely related to previously characterised Australian bovine strains

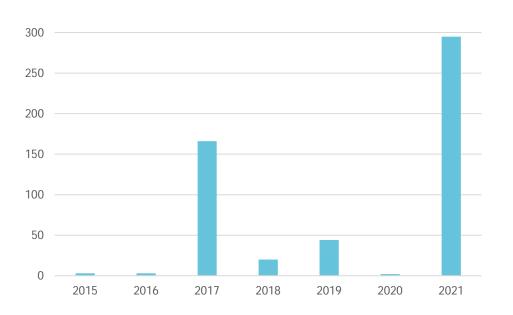

2010

2020


G8P[14] - VP7

- Predominant G8P[14] cluster
 - P[1]/P[8]
 - 1998 2017
 - Children <5
 - Within a bovine sub-lineage
 - MRCA 1997

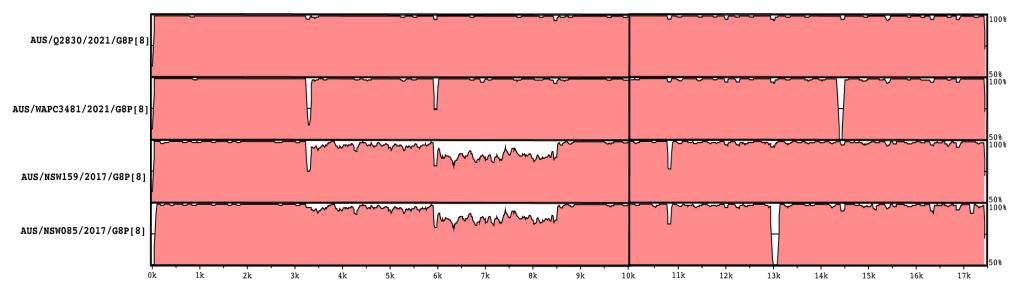
P[14]


- 2 endemic P[14] variants minor clustering based on G type
- "MG6-like" variant
 - G6 / G10 / G8 / G3
 - MRCA 1977
 - Diverged in 1930s
- "NT variant" variants shared a MRCA of 1993
 - Diverged in 1940s
- Historic divergence from global strains and prolonged endemic circulation and reassortment
- "2016" G6P[14]
 - Divergence from global strains in 1830s

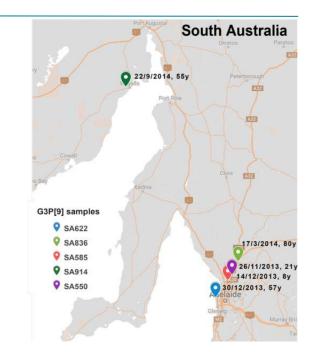
© Murdoch Children's Research Institute, 2022 9

G8P[8]

- Pre-2017 sporadic cases
 - G8-P8-I1-R1-C1-M1-A1-N1-T1-E1-H1
- 2017 outbreak in New South Wales
 - <5 years n=70
 - \geq 5 years and adults n=96
 - Contemporary European G8P[8]
 - G8-P8-I2-R2-C2-M2-A2-N2-T2-E2-H2
- 2021 outbreaks New South Wales and Victoria
 - <5 years n=147
 - ≥5 years and adults n=147
 - Reintroduction from global G8P[8]
 - G8-P8-I2-R2-C2-M2-A2-N2-T2-E2-H2
- 2022



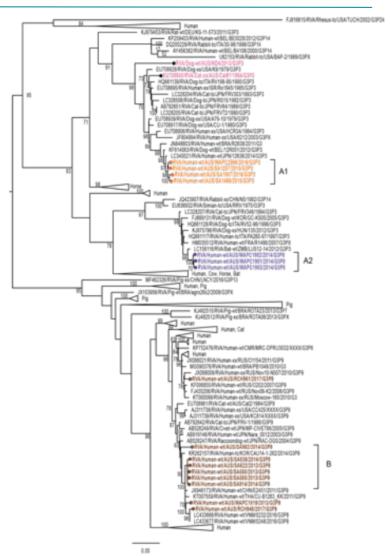
- 2021 and 2022 samples have a highly conserved genome
- 2017 outbreak strains vs. 2021/2022 outbreak
 - Highly conserved genome
 - Variant VP2 and VP3 genes



Reference: RVA/Human-wt/AUS/Q2909/2022/G8P8

Canine/feline-like G3 strains

- G3P[9] (n=20)
 - Emerged in South Australia in 2013-2014
- G3P[3] (n=19)
 - Emerged in 2010 in Western Australia
- Sporadic G3P[8] (n=3)
 - Backbone largely derived from G3P[3]



Genotype	VP7	VP4	VP6	VP1	VP2	VP3	NSP1	NSP2	NSP3	NSP4	NSP5
G3P[9]	G3	P[9]	13	R3	C3	M3	A3	N3	Т3	E3	H6
G3P[3]	G3	P[3]	13	R3	C3	M3	A9	N2	Т3	E3	H6
G3P[8]	G3	P[8]	13	R3	C3	M3	A2	N2	Т3	E3	H6

VP7 of canine/feline G3 strains

- G3P[3] cluster with canine & feline strains within the same clade as RVA/Dog-wt/AUS/ND4/2013/G3P[3]
- G3P[8] clustered in a different clade of canine and feline strains, shared high nucleotide similarity to RVA/Batwt/ZMB/LUS12-14/2012/G3P[3]
- G3P[9] cluster within a primarily human clade containing and the historic feline strain RVA/Catwt/AUS/Cat2/1984/G3P[9]
- More recent introductions into the human population

- Large diversity of rotavirus strains in Australia infecting adults and children
 - Zoonotic transmission and reassortment contributes to this diversity
- Emergence of DS-1 backbone strains e.g., G8P[8]
- Endemic circulation of variants that entered the human population decades ago via zoonotic transmission
- Recent emergence of some variants and direct zoonotic transmission events
- Diversity in animals is largely undescribed making it difficult to infer transmission events
 One-Health Initiative
- Overall burden of rotavirus disease remains significantly reduced in the vaccine era but emerging variants can cause concern especially widespread outbreaks

Acknowledgements

- Enteric Diseases Group MCRI
 - Professor Julie Bines
 - Susie Roczo-Farkas
 - Sarah Thomas
 - Dr Eleanor Lyons
 - Rhian Bonnici
 - Darren Suryawijaya
 - Dr. Paloma Moreno
 - Dr. Daniel Cowley
 - Nada Bogdanovic-Sakran
 - A/Prof Carl Kirkwood

- Monash University
 - Miguel L. Grau
 - Elena Demosthenous

Collaborating Centres

- ACT pathology, Canberra Hospital, ACT.
- The Children's Hospital at Westmead, NSW.
- Centre for Infectious Diseases and Microbiology, Westmead, NSW.
- The Prince Of Wales Hospital, NSW.
- John Hunter Hospital, Newcastle, NSW.
- Royal Darwin Hospital, NT.
- Western Diagnostic, NT.
- Alice Springs Hospital, NT.
- Royal Brisbane Hospital, QLD.
- QLD Health, Herston, QLD.
- Women's & Children's Hospital/SA Pathology, SA.
- Royal Hobart Hospital, Hobart, Tas.
- Royal Children's Hospital, Vic.
- Monash Medical Centre, Clayton, Vic.
- PathWest WA.
 - Princess Margaret Hospital WA.

Thankyou

© Murdoch Children's Research Institute, 2022